A diverse set of oligomeric class II MHC-peptide complexes for probing T-cell receptor interactions.
نویسندگان
چکیده
BACKGROUND T-cells are activated by engagement of their clonotypic cell surface receptors with peptide complexes of major histocompatibility complex (MHC) proteins, in a poorly understood process that involves receptor clustering on the membrane surface. Few tools are available to study the molecular mechanisms responsible for initiation of activation processes in T-cells. RESULTS A topologically diverse set of oligomers of the human MHC protein HLA-DR1, varying in size from dimers to tetramers, was produced by varying the location of an introduced cysteine residue and the number and spacing of sulfhydryl-reactive groups carried on novel and commercially available cross-linking reagents. Fluorescent probes incorporated into the cross-linking reagents facilitated measurement of oligomer binding to the T-cell surface. Oligomeric MHC-peptide complexes, including a variety of MHC dimers, trimers and tetramers, bound to T-cells and initiated T-cell activation processes in an antigen-specific manner. CONCLUSION T-cell receptor dimerization on the cell surface is sufficient to initiate intracellular signaling processes, as a variety of MHC-peptide dimers differing in intramolecular spacing and orientation were each able to trigger early T-cell activation events. The relative binding affinities within a homologous series of MHC-peptide oligomers suggest that T-cell receptors may rearrange in the plane of the membrane concurrent with oligomer binding.
منابع مشابه
The activation threshold of CD4+ T cells is defined by TCR/peptide-MHC class II interactions in the thymic medulla.
Immature thymocytes that are positively selected based upon their response to self-peptide-MHC complexes develop into mature T cells that are not overtly reactive to those same complexes. Developmental tuning is the active process through which TCR-associated signaling pathways of single-positive thymocytes are attenuated to respond appropriately to the peptide-MHC molecules that will be encoun...
متن کاملSoluble, high-affinity dimers of T-cell receptors and class II major histocompatibility complexes: biochemical probes for analysis and modulation of immune responses.
T cell receptors (TCR) and major histocompatibility complex (MHC) molecules are integral membrane proteins that have central roles in cell-mediated immune recognition. Therefore, soluble analogs of these molecules would be useful for analyzing and possibly modulating antigen-specific immune responses. However, due to the intrinsic low-affinity and inherent solubility problems, it has been diffi...
متن کاملAntigen presentation by mouse CD4+ T cells involving acquired MHC class II:peptide complexes: another mechanism to limit clonal expansion?
Antigen presentation by activated human and rat CD4(+) T cells has long been known to induce hyporesponsiveness due to a combination of anergy and apoptosis. It has been assumed that no such phenomenon occurs in mice due to the inability of mouse T cells to synthesize major histocompatibility complex (MHC) class II molecules. There have been several recent descriptions of the transfer of molecu...
متن کاملT cell-induced secretion of MHC class II-peptide complexes on B cell exosomes.
Antigen-specific interactions between B cells and T cells are essential for the generation of an efficient immune response. Since this requires peptide-MHC class II complexes (pMHC-II) on the B cell to interact with TCR on antigen-specific T cells, we have examined the mechanisms regulating the persistence, loss, and secretion of specific pMHC-II complexes on activated B cells. Using a mAb that...
متن کاملAmino-terminal extended peptide single-chain trimers are potent synthetic agonists for memory human CD8+ T cells.
Upon Ag exposure, most memory T cells undergo restimulation-induced cell death. In this article, we describe a novel synthetic agonist, an N-terminal extended decamer peptide expressed as a single-chain trimer, the amino-terminal extended peptide MHC class I single-chain trimer (AT-SCT), which preferentially promotes the growth of memory human CD8(+) T cells with minimal restimulation-induced c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemistry & biology
دوره 7 9 شماره
صفحات -
تاریخ انتشار 2000